The starray Package
Version 2.0

Alceu Frigeri*
February 2026

Abstract

This package implements vector like ’structures’, alike ’C’ and other programming lan-
guages. It’s based on expl3 and aimed at 'package writers’, and not end users. The provided
commands are similar the ones provided for property (or sequence, or token) lists. Most of
the provided functions have a companion “branching version”.

Contents
Introduction
Package Options
Demo package(s)

Creating a starray
4.1 Conditionals

Defining and initialising a starray structure
5.1 Fixing an ill-instantiated starray oo oL

Instantiating starray Terms

6.1 Referencing Terms L

6.2 Tterators
6.2.1 Tterating Over

Changing and Recovering starray Properties
Additional Commands and Conditionals

Parsed Commands

9.1 Parsed Commands Based on Internal Variables

9.2 Parsed Commands Based on User Variables
9.2.1 Deprecation Equivalence List

9.3 Parsed Commands on Iterate Over

10 Showing (debugging) starrays

1 Introduction

’s”, “work’s” and “reviewer’s” iterators.

*https://github.com/alceu-frigeri/starray

IS

© ot

10

11
11
13
14
15

16

The main idea is to have an array like syntax when setting/recovering structured information, e.g.
\starray_get_prop:nn {(student [2] .work[3].reviewer [4])} {(name)} where “student” is the starray
root, “work” is a sub-structure (an array in itself), “reviewer” is a sub-structure of “work” and so
on, (name) being a property of “reviewer”. Moreover one can iterate over the structure, for instance
\starray_get_prop:nn {(student.work.reviewer)} {(name)} is also a possible reference in which one
is using “student

Internally, a starray is stored as a collection of property lists. Each starray can contain a
list of property pairs (key/value as in any expl3 property lists) and a list of sub-structures. Each
sub-structure, at it’s turn, can also contain a list of property pairs and a list of sub-structures.

The construction/definition of a starray can be done piecewise (a property/sub-structure a
time) or with a keyval interface or both, either way, one has to first “create a root starray”
(\starray_new:n), define it’s elements (properties and sub-structures), then instantiate them “as
needed”. An instance of a starray (or one of it’s sub-structures) is referred, in this text, as a
“term”.

Finally, almost all defined functions have a branching version, as per expl3: T, F and TF
(note: no _p variants, see below). For simplicity, in the text bellow only the TF variant is de-
scribed, as in \starray_new:nTF, keep in mind that all 3 variants are defined, e.g. \starray_new:nT,
\starray_new:nF and \starray_new:nTF.

Note: Could it be implemented with a single property list? It sure could, but
at a cost: 1. complexity; 2. access time. The current implementation, albeit also
complex, tries to reach a balance between an inherent structure complexity, number
of used/defined auxiliary property lists and access time.

Important: Expandability, unfortunately most/all defined functions are not “ex-
pandable”, in particular, most conditional/branching functions aren’t, with just a
few exceptions (marked with a star %).

2 Package Options

The package options (key =value) are:

msg-err By default, the starray package only generates “warnings”, with msg-err one can choose which
cases will generate “package error” messages. There are 3 message classes:
1. strict relates to \starray_new:n cases (starray creation);
2. syntax relates to “term syntax” errors (student.work.reviewer in the above examples); and
3. reference relates to cases whereas the syntax is correct but referring to a non-existent term
or property.

none (default) no package message will raise an error.

strict will raise an error on strict case alone.

syntax will raise an error on strict and syntax cases.

reference will raise an error on strict, syntax and reference cases.
all will raise an error on all cases.

msg-suppress ditto, to suppress classes of messages:

none (default) no package message will be suppressed.

reference only reference level messages will be suppressed.

syntax reference and syntax level messages will be suppressed.

strict reference, syntax and strict level messages will be suppressed.
all all messages will be suppressed.

parsed check By default (false) the many \starray_parsed_ commands won’t check if the last \starray_term_parser:
was successful. With this option, they will test it (with a performance hit) raising a warning/error
accordantly.

NN names Compatibility option. See 9.2 for more details. Possible values are:

none (default) None of the old ...parsed..:NN.. functions will be defined.
no warnings The old ...parsed..:NN.. functions will be defined. No warnings will be issued
strict The old ...parsed..:NN.. functions will be defined, issuing a deprecation warning

at each use.

iter cascade By default, since version 2.0, when setting the value of an iterator, none of the substructure’s
iterators will be affected. With this option set, all substructure’s iterators will be reset to 1 (or
zero), see 6.2.

3 Demo package(s)

Given the inherent complexity of this package, one can find at https://github.com/alceu-frigeri/
starray/tree/main/demo an example, stdemo.sty, package with its companion documentation
stdemo.pdf. Since the aforementioned package, and documentation, are just an example of use, it
doesn’t make sense to add them to CTAN.

4 Creating a starray

\starray_new:n \starray_new:n {(starray)’}
\starray_new:nTF \starray_new:nTF {(starray)} {(if-true)} {(if-false)}

Creates a new (starray) or raises a warning if the name is already taken. The declaration (and
associated property lists) is global. The given name is referred (in this text) as the (starray-root)
or just (root).

Note: A warning is raised (see 2) if the name is already taken. The branching version
doesn’t raise any warning.

4.1 Conditionals

\starray_if_exist_p:n * \starray_if_exist_p:n {(starray)}
\starray_if_exist:nTF % \starray_if_exist:nTF {(starray)} {(if-true)} {(if-false)}
\starray_if_valid_p:n * \starray_if_valid_p:n {(starray)}
\starray_if_valid:nTF x \starray_if_valid:nTF {(starray)}{(if-true)} {(if-false)}

new: 2023/05/20
updated: 2024/03/28

\starray_if_exist:nIF only tests if (starray) (the base property) is defined. It doesn’t verifies
if it really is a starray. \starray_if_valid:nTF is functionally equivalent, since release 1.9. See
\starray_term_parser:nTF, section 8, for a more reliable validity test.

Note: The predicate versions, _p, expand to either \c_true_bool or
\c_false_bool

5 Defining and initialising a starray structure

\starray_def_prop:nnn \starray_def_prop:nnn {(starray-ref)} {(prop-key)} {(initial-value)}
\starray_def_prop:nnnTF \starray_def_prop:nnnTF {(starray-ref)} {(prop-key)} {(initial-value)} {(if-true)}
{(if-false)}

Adds an entry, (prop-key), to the (starray-ref) (see 6.1) definition and set its initial value. If
(prop-key) is already present its initial value is updated. Both (prop-key) and (initial-value) may
contain any (balanced text). (prop-key) is an (expl3) property list (key) meaning that category
codes are ignored.

The definition/assignment of a (prop-key) to a (starray-ref) is global.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax/reference error.
The branching version doesn’t raise any warning.

\starray_def_structure:nn \starray_def_struct:nn {(starray-ref)} {(struct-name)}
\starray_def_structure:nnTF \starray_def_struct:nnTF {(starray-ref)} {(struct-name)} {(if-true)} {(if-false)}

Adds a sub-structure (a starray in itself) to (starray-ref) (see 6.1). If (struct-name) is already
present nothing happens. The definition/assignment of a (struct-name) to a (starray-ref) is global.

Note: Do not use a dot when defining a (sub-)structure name, it might seems to
work but it will breaks further down (see 6.1).

Note 2: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

https://github.com/alceu-frigeri/starray/tree/main/demo
https://github.com/alceu-frigeri/starray/tree/main/demo

\starray_def_from_keyval:nn \starray_def_from_keyval:nn {(starray-ref)} {(keyval-1lst)}
\starray_def_from_keyval:nnTF \starray_def_from_keyval:nnTF {(starray-ref)} {(keyval-1st)} {(if-true)} {(if-false)}

Adds a set of (keys) / (values) and/or (structures) to (starray-ref) (see 6.1). The (keyval-1st)
is pretty straightforward, the construction (key) . struct denotes a nested structure :

\starray_def_from_keyval:nn {root.substructure}
{
keyA = valA ,
keyB valB ,
subZ . struct =
{
keyZA
keyZB
}
subY . struct =
{
keyYA = valYA ,
keyYB = valYB ,
subYYY . struct =
{
keyYYYa
keyYYYb
¥

valZA ,
valZB ,

valYYYa ,
valYYYb

The definitions/assignments to (starray-ref) are all global.
Note: The non-branching version raises a warning (see 2) in case of a (starray-ref)
syntax error. The branching version doesn’t raise any warning. Also note that, syntax
errors on the (keyval-1lst) might raise low level (TEX) errors.

5.1 Fixing an ill-instantiated starray

When instantiating (see 6) a starray, the associated structure will be constructed based on it’s
“current definition” (see 5). A problem that might arise, when one extends the definition of an
already instantiated starray (better said, if one adds a sub-structure to it), is that a quark loop
will issue (from 13quark). To avoid that quark loop it is necessary to “fix” the structure of the
already instantiated terms.

\starray_fix_terms:n \starray_fix_terms:n {(starray-ref)}

The sole purpose of this function is to “fix” the already instantiated terms of a starray. Note, the
reason this isn’t automatically executed when adding a sub-structure, is that this is an expensive
operation, because it has to craw over all the terms of an instantiated starray adding any missing
sub-structure reference, but one doesn’t need to run it “right away” it is possible to add a bunch
of sub-structures and then run this just once.

6 Instantiating starray Terms

\starray_new_term:n \starray_new_term:n {(starray-ref)}

\starray_new_term:nn \starray_new_term:nn {(starray-ref)} {(hash)}

\starray_new_term:nTF \starray_new_term:nTF {(starray-ref)} {(if-true)} {(if-false)}
\starray_new_term:nnTF \starray_new_term:nnTF {(starray-ref)} {(hash)} {(if-true)} {(if-false)}

This create a new term (in fact a property list) of the (sub-)struture referenced by (starray-ref).
Note that the newly created term will have all properties (key/values) as defined by the associated
\starray_prop_def :nn {(starray-ref)}, with the respective “initial values”. For instance, given the
following

\starray_new:n {st-root}

\starray_def_from_keyval:nn {st-root}
{
keyA = valA ,
keyB valB ,
subZ . struct =
{
keyZA valZA ,
keyZB = valZB ,
}
subY . struct =
{
keyYA = valYA ,
keyYB = valYB ,
subYYY . struct =
{
keyYYYa = valYYYa ,
keyYYYb = valYYYb
}

}

{st-root}
{st-root.subZ}

\starray_new_term:
\starray_new_term:
\starray_new_term:n {st-root.subZ}
\starray_new_term:n {st-root.subY}
\starray_new_term:nn {st-root}{hash-A}
\starray_new_term:n {st-root.subZ}

n
n
n
n

One will have created 6 terms:

1. 2 (st-root) terms

(a) the first one with index 1 and
i. 2 sub-structures (subz) (indexes 1 and 2)
ii. 1 sub-structure (subY) (index 1)

(b) the second one with indexes 2 and “hash-A” and
i. 1 sub-structure (subz) (index 1)

Note that, in the above example, it was used the “implicit” indexing (aka. iterator, see 6.1).
Also note that no term (subYYY) was created.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

6.1 Referencing Terms

When typing a (starray-ref) there are 3 cases to consider:

1. structure definition
2. term instantiation

3. getting/setting a property

The first case is the simplest one, in which, one (starting by (starray-root) will use a construct
like (starray-root).(sub-struct).(sub-struct)...For example, an equivalent construct to the one
shown in 6 :

\starray_new:n {st-root}
\starray_def_struct:nn {st-root}{subZ}

\starray_def_prop:nnn {st-root}{keyA}{valA}
\starray_def_prop:nnn {st-root}{keyB}{valB}

\starray_def_prop:nnn {st-root.subZ}{keyZA}{valZA}
\starray_def_prop:nnn {st-root.subZ}{keyZB}{valZB}

\starray_def_struct:nn {st-root}{subY}
\starray_def_prop:nnn {st-root.subY}{keyYA}{valYA}
\starray_def_prop:nnn {st-root.subY}{keyYB}{valYB}

\starray_def_struct:nn {st-root.subY}{subYYY}
\starray_def_prop:nnn {st-root.subY.subYYY}{keyYYYA}{valYYYA}
\starray_def_prop:nnn {st-root.subY.subYYY}{keyYYYB}{valYYYB}

Note that, all it’s needed in order to be able to use (starray-root).(sub-A) is that (sub-A) is
an already declared sub-structure of (starray-root). The property definitions can be made in any
order.

In all other cases, term instantiation, getting/setting a property, one has to address/reference
a specific instance/term, implicitly (using iterators) or explicitly using indexes. The general form,
of a (starray-ref), is:

(starray-root)(idx).(sub-A)(idxA).(sub-B)(idxB)

In the case of term instantiation the last (sub-) cannot be indexed, after all one is creating a
new term/index. Moreover, all (idx) are optional like:

(starray-root).(sub-A)(idxA).(sub-B)

in which case, one is using the “iterator” of (starray-root) and (sub-B) (more later, but keep
in mind the (sub-B) iterator is the (sub-B) associated with the (sub-A)(idx4)).

Since one has to explicitly instantiate all (sub)terms of a starray, one can end with a highly
asymmetric structure. Starting at the (starray-root) one has a first counter (representing, indexing
the root structure terms), then for all sub-strutures of (starray-root) one will have an additional
counter for every term of (starray-root) !

So, for example:

\starray_new:n {st-root}
\starray_def_struct:nn {st-root}{subZ}
\starray_def_struct:nn {st-root}{subY}
\starray_def_struct:nn {st-root.subY}{subYYY}
\starray_new_term:n {st-root}
\starray_new_term:n {st-root.subZ}
\starray_new_term:n {st-root.subZ}
\starray_new_term:n {st-root.subY}
\starray_new_term:n {st-root.subY}
\starray_new_term:n {st-root.subY.subYYY}
\starray_new_term:n {st-root.subY}

{st-root}

{st-root.subZ}
{st-root.subZ}
{st-root.subY}

\starray_new_term:
\starray_new_term:
\starray_new_term:
\starray_new_term:

n
n
n
n

One has a single (st-root) iterator (pointing to one of the 3 (st-root) terms), then 3 “(subz)
iterators”, in fact, one (subZ) iterator for each (st-root) term. Likewise there are 3 “(subY) iterators”
and 4 (four) “(subYYY) iterators” one for each instance of (subY).

Every time a new term is created/instantiated, the corresponding iterator will points to it,
which allows the notation used in this last example, keep in mind that one could instead, using
explicit indexes:

\starray_new:n {st-root}
\starray_def_struct:nn {st-root}{subZ}
\starray_def_struct:nn {st-root}{subY}
\starray_def_struct:nn {st-root.subY}{subYYY}
\starray_new_term:n {st-root}
\starray_new_term:n {st-root[1].subZ}
\starray_new_term:n {st-root[1].subZ}
\starray_new_term:n {st-root[1].subY}
\starray_new_term:n {st-root[1].subY}
\starray_new_term:n {st-root[1].subY[2].subYYY}
\starray_new_term:n {st-root[1].subY}

{st-root}

{st-root[2] .subZ}
{st-root[2].subZ}
{st-root[2].subY}

\starray_new_term:
\starray_new_term:
\starray_new_term:
\starray_new_term:

Finally, observe that, when creating a new term, one has the option to assign a “hash” to it,
in which case that term can be referred to using an iterator, the explicit index or the hash:

\starray_new:n {st-root}
\starray_def_struct:nn {st-root}{subZ}
\starray_def_struct:nn {st-root}{subY}
\starray_def_struct:nn {st-root.subY}{subYYY}

\starray_new_term:nn {st-root}{hash-A}
\starray_new_term:n {st-root.subZ}
\starray_new_term:n {st-root[1].subZ}
\starray_new_term:n {st-root[hash-A].subZ}

Will create 3 (subZ) terms associated with the first (st-root) term (index = 1).

6.2 Iterators

In the following commands, since version 2.0, when setting/resetting/incrementing the iterator of
a (sub-)structure, only the given (sub-)structure iterator will be affected. With the package option
iter cascade (see 2) all “descending” iterators will also be reset to 1 or 0. All assignments to a
structure’s iterator are global.

\starray_set_iter:nn \starray_set_iter:nn {(starray-ref)} {(int-val)}

\starray_set_iter:nnTF \starray_set_iter:nTF {(starray-ref)} {(int-val)} {(if-true)} {(if-false)}
\starray_reset_iter:nn \starray_reset_iter:n {(starray-ref)}

\starray_reset_iter:nTF \starray_reset_iter:nTF {(starray-ref)} {(if-true)} {(if-false)}
\starray_next_iter:n \starray_next_iter:n {(starray-ref)}

\starray_next_iter:nnTF \starray_next_iter:nTF {(starray-ref)}{(if-true)} {(if-false)}

Those functions allows to set an iterator to a given value, (int-val), reset it (i.e. assign 1 to
it), or increase the iterator by one. An iterator might have a value between 1 and the number of
instantiated terms. If the (sub-)structure wasn’t instantiated, the iterator will be set to 0. The
branching versions allows to catch those cases, like trying to set a value past its maximum, or a
value smaller than one, otherwise values outside the valid range won’t raise any warning/error.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

In the following example, given:

\starray_new:n {st-root}
\starray_def_struct:nn {st-root}{subZ}
\starray_def_struct:nn {st-root}{subY}
\starray_def_struct:nn {st-root.subY}{subYYY}

{st-root}
{st-root.subZ}
{st-root.subZ}
{st-root.subY}
{st-root.subY.subYYY}
{st-root.subY.sub¥YYY}

\starray_new_term:n
\starray_new_term:n

\starray_new_term:n

\starray_new_term:n

\starray_new_term:n

\starray_new_term:n

\starray_new_term:n {st-root.subY}
\starray_new_term:n {st-root.subY.subYYY}
\starray_new_term:n {st-root.subY.subYYY}
\starray_new_term:n {st-root}
\starray_new_term:n {st-root.subZ}
\starray_new_term:n {st-root.subZ}
\starray_new_term:n {st-root.subY}
\starray_new_term:n {st-root.subY.subYYY}
\starray_new_term:n {st-root.subY.subYYY}
\starray_new_term:n {st-root.subY}
\starray_new_term:n {st-root.subY.subYYY}
\starray_new_term:n {st-root.subY.subYYY}

\starray_set_prop:nnn {st-root.subY.subYYY}{key}{vall}
\starray_set_prop:nnn {st-root[2].subY[2].subYYY[2]}{key}{val}

\starray_reset_iter:n {st-root[2].subY}

\starray_set_prop:nnn {st-root.subY.subYYY}{key}{vall}
\starray_set_prop:nnn {st-root[2].subY[1].subYYY[1]}{key}{val}

Before the reset (st-root.subY.subYYY) was equivalent to (st-root[2].subY[2].subVYY[2]), given
that each iterator was pointing to the “last term”, since the reset was of the (subY) iterator, only it
reset, and therefore (st-root.subY.subYYY) was then equivalent to (st-root[2].subY[1].subYYY[2]).

Note: With the package option iter cascade all sub-structure’s iterators will also be
set/reset, meaning, in the above example, that after resetting the (subY), the iterator
of (subYYY) (it’s only descendant) will also be reset, therefore (st-root.subY.subYYY)
would be equivalent to (st-root[2].subY[1].subYYY[1]) in this case.

\starray_set_iter_from_hash:nn \starray_set_iter_from_hash:nn {(starray-ref)} {(hash)}
\starray_set_iter_from_hash:nnTF \starray_set_iter_from_hash:nnTF {(starray-ref)} {(hash)} {(if-true)} {(if-false)}

new: 2023/11/04

\starray_set_iter_from_hash:nn {(starray-ref)} {(hash)} will set iter based on the (hash) used
when instantiating a term (see 6).

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error or invalid
(hash). The branching version doesn’t raise any warning.

\starray_get_iter:n \starray_get_iter:n {(starray-ref)}
\starray_get_iter:nN \starray_get_iter:nN {(starray-ref)} {(int-var)}
\starray_get_iter:nNTF \starray_get_iter:nNTF {(starray-ref)} {(int-var)} {(if-true)} {(if-false)}

\starray_get_iter:n {(starray-ref)} will type in the current value of a given iterator, whilst the
other two functions will save it’s value in a integer variable (exp13). The assignment is local.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

\starray_get_cnt:n \starray_get_cnt:n {(starray-ref)}
\starray_get_cnt:nN \starray_get_cnt:nN {(starray-ref)} {(integer)}
\starray_get_cnt:nNTF \starray_get_cnt:nNTF {(starray-ref)} {(integer)} {(if-true)} {(if-false)}

\starray_get_cnt:n {(starray-ref)} will type in the current number of terms of a given (sub-
)structure, whilst the other two functions will save it’s value in a integer variable (exp13). The
assignment is local.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

6.2.1 Iterating Over

\starray_iterate_over:nn \starray_iterate_over:nn {(starray-ref)}{(code)}
\starray_iterate_over:nnTF \starray_iterate_over:nnTF {(starray-ref)} {(code)} {(if-true)} {(if-false)}

new: 2023/11/04
updated: 2026/02/01

\starray_iterate_over:nn will reset the (starray-ref) iterator, and then execute (code) for each
valid value of iter. At the loop’s end, the (starray-ref) iterator will point to the last element
of it. The (if-true) is executed, at the loop’s end if there is no syntax error, and the referenced
structure was properly instantiated. Similarly (if-false) is only execute if a syntax error is detected
or the referenced structure wasn’t properly instantiated. See 9.3 for a series of helper/companion
commands when writing (code).

Note: \starray_iterate_over:nn is recurse aware, and can be nested to recurse
over sub-structures. Be aware, though, that all iterators assignments are global.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error or the
structure wasn’t yet instantiated. The branching version doesn’t raise any warning.

7 Changing and Recovering starray Properties

\starray_set_prop:
\starray_set_prop:
\starray_set_prop:
\starray_set_prop:

nnn \starray_set_prop:nnn {(starray-ref)} {(prop-key)} {(value)}
nnV \starray_set_prop:nnV {(starray-ref)} {(prop-key)} {(value)}
nnnTF \starray_set_prop:nnnTF {(starray-ref)} {(prop-key)} {(value)} {(if-true)} {(if-false)}
nnVIF \starray_set_prop:nnVIF {(starray-ref)} {(prop-key)} {(value)} {(if-true)} {(if-false)}

\starray_gset_prop:nnn \starray_gset_prop:nnn {(starray-ref)} {(prop-key)} {(value)}
\starray_gset_prop:nnV \starray_gset_prop:nnV {(starray-ref)} {(prop-key)} {(value)}
\starray_gset_prop:nnnTF \starray_gset_prop:nnnTF {(starray-ref)} {(prop-key)} {(value)} {(if-true)} {(if-false)}
\starray_gset_prop:nnVIF \starray_gset_prop:nnVTF {(starray-ref)} {(prop-key)} {(value)} {(if-true)} {(if-false)}

Those are the functions that allow to (g)set (change) the value of a term’s property. If the
(prop-key) isn’t already present it will be added to that term, (starray-ref), only. The (nnV)
variants allow to save the value of a variable like a token list, clist list, etc...

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

\starray_set_from_
\starray_set_from_

keyval:nn \starray_set_from_keyval:nnn {(starray-ref)} {(keyval-lst)}
keyval:nnTF \starray_set_from_keyval:nnnTF {(starray-ref)} {(keyval-1lst)} {(if-true)}

\starray_gset_from_keyval:nn {(if-false)}
\starray_gset_from_keyval:nnTF \starray_gset_from_keyval:nnn {(starray-ref)} {(keyval-lst)}

\starray_gset_from_keyval:nnnTF {(starray-ref)} {(keyval-1lst)} {(if-true)}
{(if-false)}

it is possible to set a collection of properties using a key/val syntax, similar to the one used to
define a starray from keyvals (see 5), with a few distinctions:

1. when referring a (sub-)structure one can either explicitly use an index, or
2. implicitly use it’s iterator
3. if a given key isn’t already presented it will be added only to the given term

Note that, in the following example, TWO iterators are being used, the one for (st-root) and then
(subY).

\starray_set_from_keyval:nn {st-root}

{
keyA = valA ,
keyB = valB ,
subZ[2] =
{
keyZA
keyZB
}
subY =
{
keyYA = valYA
keyYB = valYB
subYYY[1] =
{
keyYYYa
keyYYYb
}

valZA
valZB

valYYYa ,

valYYYb

Also note that the above example is fully equivalent to:

\starray_set_prop:nnn
\starray_set_prop:nnn
\starray_set_prop:nnn
\starray_set_prop:nnn
\starray_set_prop:nnn
\starray_set_prop:nnn
\starray_set_prop:nnn
\starray_set_prop:nnn

{st-root} {keyA} {valA}
{st-root} {keyB} {valB}

{st-root.
{st-root.
{st-root.
{st-root.
{st-root.
{st-root.

subZ[2]} {keyZA} {valZA}

subZ[2]} {keyZB} {valZB}

subY} {keyYA} {valYA}

subY} {keyYB} {valYB}
subY.subYYY[1} {keyYYYa} {valYYYa}
subY.subYYY[1} {keyYYYb} {valYYYb}

\starray_get_prop:nn \starray_get_prop:nn {(starray-ref)} {(key)}
\starray_get_prop:nnN \starray_get_prop:nnN {(starray-ref)} {(key)} {(tl-var)}
\starray_get_prop:nnNTF \starray_get_prop:nnNTF {(starray-ref)} {(key)} {(tl-var)} {(if-true)} {(if-false)}

\starray_get_prop:nn {(starray-ref)} {(key)} places the value of (key) in the input stream.
\starray_get_prop:nnN {(starray-ref)} {(key)} {(t1l-var)} recovers the value of (key) and places it
in (t1-var) (a token list variable), this is specially useful in conjunction with \starray_set_prop:nnV,
whilst the \starray_get_prop:nnNTF version branches accordly. The assignment is local.

Note: In case of a syntax error, or (key) doesn’t exist, an empty value is left in the
stream (or (tl-var)).

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

8 Additional Commands and Conditionals

\starray_if_in:nnTF \starray_if_in:nnTF {(starray-ref)} {(key)} {(if-true)} {(if-false)}

The \starray_if_in:nnTF {(starray-ref)} {(key)} {(..)} {(...)} tests if a given (key) is present.

\starray_get_unique_id:nN \starray_get_unique_id:nN {(starray-ref)} {(t1l-var)}
\starray_get_unique_id:nNTF \starray_get_unique_id:nNTF {(starray-ref)} {(tl-var)} {(if-true)} {(if-false)}

new: 2024/03/10

Gets an ‘unique ID’ for a given (starray-ref) term, it should help defining/creating uniquely
identified auxiliary structures, like auxiliary property or sequence lists, since one can’t (better said
shouldn’t, as per 13kernel) store an anonymous property/sequence list using V-expansion. The

assignment is local.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error. The
branching version doesn’t raise any warning.

10

9 Parsed Commands

Since the parsing of a (starray-ref) is a non-expandable and expensive operation, the commands
below allow for some coding speed up (by avoiding parsing the same (starray-ref) repeatedly) and
offers expandable alternatives to a few commands.

The use pattern would be (1) to first parse the (starray-ref) with either \starray_term_parser:n
or \starray_term_parser:nN and thereafter (2) use the many \starray_parsed_ or \starray_uparsed_
commands.

Note that, there are three sets of commands, one associated with \starray_term_parser:n
or \starray_term_parser:nTF (which relies on internal variables), another set associated with
\starray_term_parser:nN or \starray_term_parser:nNTF (Which allows to save many (starray-ref)
parsed terms), and lastly one associated with \starray_iterate_over:nn (see 6.2.1).

9.1 Parsed Commands Based on Internal Variables

\starray_term_parser:n \starray_term_parser:n {(starray-ref)}
\starray_term_parser:nTF \starray_term_parser:nTF {(starray-ref)} {(if-true)} {(if-false)}

new: 2023/05/20
updated: 2025/10/25

In case one needs to access the same term again and again, this will just parse a (starray-ref)
reference once, and set interval variables so that commands like \starray_parsed_ can be used
thereafter (avoiding having to slowly parse the same term over and over).

Note: The internal variables used are exclusive, no other command (besides these
two), set them. This allows to “parse a term” and call other \starray_ commands
before using the “parsed term” with one of the \starray_parsed_ commands.

Warning: While it allows for some code speedup, and enables some commands to
be fully expandable, be aware that the internal variables will only be set correctly if,
and only if, the (starray-ref) is a valid term reference.

Note: By default, the many associated \starray_parsed_ won’t check the status of
the last \starray_term_parser:n operation. This can be changed with the package
option parsed check (see 2) in which case all associated \starray_parsed_ will then
verify the status of the last operation and raise a warning/error.

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error, in which
case the internal variables won’t be set correctly. The branching version doesn’t raise
any warning.

Note: The \starray_term_syntax:n and \starray_term_syntax:nTF have been
deprecated (version 1.11), a warning is raised if a deprecated one is called.

\starray_parsed_if_in_p:n * \starray_parsed_if_in_p:nTF {(key)}
\starray_parsed_if_in:nTF % \starray_parsed_if_in:nTF {(key)} {(if-true)} {(if-false)}

new: 2023/05/20

This will test if the given key is present in the “last parsed term”.

Note: The predicate version, _p, expands to either \c_true_bool or
\c_false_bool.

Warning: This can only be used after \starray_term_parser:n and only makes
sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

\starray_parsed_get_iter: * \starray_parsed_get_iter:

new: 2023/05/20

\starray_parsed_get_iter: will place in the current iterator’s value, using \int_use:N, of the last
parsed term in the input stream.

Warning: This can only be used after \starray_term_parser:n and only makes
sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

11

\starray_parsed_get_iter:N \starray_parsed_get_iter:N {(int-var)}
\starray_parsed_get_iter:NIF \starray_parsed_get_iter:NTF {(int-var)} {(if-true)} {(if-false)}

new: 2025/10/25

These will save the iterator’s value (of a parsed term) in a integer variable (exp13). The (if-true)
and (if-false) regards the status of the last \starray_term_parser: command, iff the option parsed
check (see 2) is enable, otherwise it will always execute the (if-true) branch.

Warning: This can only be used after \starray_term_parser:n and only makes

sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

\starray_parsed_get_cnt: * \starray_parsed_get_cnt:

new: 2023/05/20

\starray_parsed_get_cnt: will place the current number of terms, using \int_use:N, of the last
parsed term, in the input stream.
Warning: This can only be used after \starray_term_parser:n and only makes
sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

\starray_parsed_get_cnt:N \starray_get_cnt:N {(integer)}
\starray_parsed_get_cnt:NTF \starray_get_cnt:NTF {(integer)} {(if-true)} {(if-false)}

new: 2025/10/25

Similarly to \starray_get_cnt:nN and \starray_get_cnt:nNTF these will save the number of terms
(of the last parsed term) in a integer variable (exp13). The (if-true) and (if-false) regards the
status of the last \starray_term_parser: command, iff the option parsed check (see 2) is enable,
otherwise it will always execute the (if-true) branch.
Warning: This can only be used after \starray_term_parser:n and only makes
sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

\starray_parsed_get_prop:n * \starray_parsed_get_prop:n {(key)}

new: 2023/05/20

\starray_parsed_get_prop:n {(key)} places the value of (key), if it exists, from the last parsed term,
in the input stream.
Warning: This can only be used after \starray_term_parser:n and only makes

sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

\starray_parsed_get_prop:nN \starray_parsed_get_prop:nN {(key)} {(tl-var)}
\starray_parsed_get_prop:nNTF \starray_parsed_get_prop:nNTF {(key)} {(tl-var)} {(if-true)} {(if-false)}

new: 2025/10/25

\starray_parsed_get_prop:nN {(key)} {(t1l-val)} stores the value of (key), if it exists, from the last
parsed term. The (if-false) branch is executed if (key) doesn’t exist or (if the option parsed
check, see 2, is enabled) if the last parser operation has failed.

Warning: This can only be used after \starray_term_parser:n and only makes

sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

\starray_parsed_get_unique_id:nN \starray_parsed_get_unique_id:nN {(tl-var)}
\starray_parsed_get_unique_id:nNTF \starray_parsed_get_unique_id:nNTF {(t1l-var)} {(if-true)} {(if-false)}

new: 2025/10/25

Gets an ‘unique ID’ from the last parsed term. The (if-true) and (if-false) regards the status of
the last \starray_term_parser: command, iff the option parsed check (see 2) is enable, otherwise
it will always execute the (if-true) branch.
Warning: This can only be used after \starray_term_parser:n and only makes
sense (and returns a reliable/meaningful result) IF the last parser operation was
successfully executed.

12

9.2 Parsed Commands Based on User Variables

Due to internal changes, since version 1.12, there is no longer the need to use two variables to
save an ‘internal reference’, though just reducing the signatures of the original _parsed_ commands
by one N resulted in some name crashing which, unfortunately, obliged a series of commands
renaming, as follows: all commands related in this section now are named \starray_uparsed_ so
they are completely distinct from those commands from the previous section, 9.1. By default, only
the new names are defined. Using the package option NN names, see 2, the old command names get
also defined. With NN names = strict the old commands will issue an warning pointing to the new
names (this might result in low level errors if the commands are used in an expansion context).
With NN names = no warnings the old commands won'’t issue any warning about their use.

\starray_term_parser:nN \starray_term_parser:nN {(starray-ref)} {(parsed-refA)}
\starray_term_parser:nNTF \starray_term_parser:nNTF {(starray-ref)} {(parsed-refA)} {(if-true)} {(if-false)}

new: 2023/11/28
updated: 2025/10/25
updated: 2025/12/08

(parsed-refA) (assumed to be a token list variable, (t1-var)) will receive an ‘internal reference’
that can be used in commands like \starray_uparsed_...:N which expects such ‘reference’. The
assignment is global.

Note: Once correctly parsed, (parsed-refh) can be used at ’any time’ (by those few
\starray_uparsed_. .. :N associated commands).

Note: A warning is raised (see 2) in case of a (starray-ref) syntax error (in which
case (parsed-refA) will not hold a valid value). The branching version doesn’t raise
any warning.

Note: Commands \starray_term_parser:nNN and \starray_term_parser :nNNTF,
besides \starray_term_syntax:nNN and \starray_term_syntax:nNNTF, have been
deprecated (versions 1.11 and 1.12), a warning is raised if a deprecated one is called.

\starray_uparsed_if_in_p:Nn x \starray_uparsed_if_in_p:nTF {(parsed-refA)} {(key)}
\starray_uparsed_if_in:NnTF x \starray_uparsed_if_in:nTF {(parsed-refA)} {(key)} {(if-true)} {(if-false)}

new: 2023/11/28
updated: 2025/12/08

This will test if the given key is present/associated with (parsed-refA).

Note: The predicate version, _p, expands to either \c_true_bool or \c_false_bool.

Warning: (parsed-refA) should be the value returned by \starray_term_parser:nN.

\starray_uparsed_get_iter:N x \starray_uparsed_get_iter:N {(parsed-refA)}

new: 2023/11/28
updated: 2025/12/08

\starray_uparsed_get_iter: will place in the current iterator’s value associated with (parsed-refA),
using \int_use:N, in the input stream.

Warning: (parsed-refA) should be the value returned by \starray_term_parser:nN.

\starray_uparsed_get_iter:NN \starray_uparsed_get_iter:NN {(parsed-refA)} {(int-var)}
\starray_uparsed_get_iter:NNTF \starray_uparsed_get_iter:NNTF {(parsed-refA)} {(int-var)} {(if-true)} {(if-false)}

new: 2025/10/25
updated: 2025/12/08

These will save the iterator’s value in a (int-var). The \starray_uparsed_get_iter:NNTF is for
symmetry only (with other commands), it will always execute the (if-true).

Warning: (parsed-refh) should be the value returned by \starray_term_parser:nN.

\starray_uparsed_get_cnt:N x \starray_uparsed_get_cnt:N {(parsed-reflA)}

new: 2023/11/28
updated: 2025/12/08

\starray_uparsed_get_cnt: will place in the current number of terms associated with (parsed-refa),
using \int_use:N, in the input stream.

13

Warning: (parsed-refA) should be the value returned by \starray_term_parser:nN.

\starray_uparsed_get_cnt:NN

\starray_get_cnt:NN {(parsed-refA)} {(int-var)}

\starray_uparsed_get_cnt:NNTF \starray_get_cnt:NNTF {(parsed-refA)} {(int-var)} {(if-true)} {(if-false)}

new: 2025/10/25
updated: 2025/12/08

Similarly to \starray_get_cnt:nN and \starray_get_cnt:nNTF these will save the number of terms
in (int-var). The \starray_uparsed_get_cnt:NNIF is for symmetry only (with other commands), it

will always execute the (if-true).

Warning: (parsed-refh) should be the value returned by \starray_term_parser:nN.

\starray_uparsed_get_prop:Nn x \starray_uparsed_get_prop:Nn {(parsed-refl)} {(key)}

new: 2023/11/28
updated: 2025/12/08

\starray_uparsed_get_prop:Nn places the value of (key), if it exists, associated with (parsed-refA).

Warning: (parsed-refA) should be the value returned by \starray_term_parser:nN.

\starray_uparsed_get_prop:NnN

\starray_uparsed_get_prop:NnN {(parsed-refl)} {(key)} {(tl-var)}

\starray_uparsed_get_prop:NnNTF \starray_uparsed_get_prop:NnNTF {(parsed-refA)} {(key)} {(t1l-var)} {(if-true)}

new: 2025/10/25 {(if-false)}
updated: 2025/12/08

\starray_uparsed_get_prop:NnN {(key)} {(t1-val)} stores the value of (key), if it exists, from the

parsed term.

Warning: (parsed-refh) should be the value returned by \starray_term_parser:nN.

\starray_uparsed_get_unique_id:NN

\starray_uparsed_get_unique_id:NN {(parsed-refA)} {(t1l-var)}

\starray_uparsed_get_unique_id:NNTF \starray_uparsed_get_unique_id:NNTF {(parsed-refA)} {(tl-var)} {(if-true)’}

new: 2025/10/25 {(if-false)}
updated: 2025/12/08

Gets an ‘unique ID’ from the last parsed term. The \starray_uparsed_get_unique_id:NNTF is for
symmetry only (with other commands), it will always execute the (if-true).

Warning: (parsed-refh) should be the value returned by \starray_term_parser:nN.

9.2.1 Deprecation Equivalence List

Bellow follows a complete list of all deprecated names and their corresponding new names. Note
each command signature (one N shorter).

Deprecated
\starray_term_parser:nNN

\starray_term_parser:nNNTF
\starray_parsed_if_in_p:NNn
\starray_parsed_if_in:NNnTF
\starray_parsed_get_iter:NN
\starray_parsed_get_iter:NNN
\starray_parsed_get_iter:NNNTF
\starray_parsed_get_cnt:NN
\starray_parsed_get_cnt :NNN
\starray_parsed_get_cnt:NNNTF
\starray_parsed_get_prop:NNn
\starray_parsed_get_prop:NNnN
\starray_parsed_get_prop:NNnNTF
\starray_parsed_get_unique_id:NNN

\starray_parsed_get_unique_id:NNNTF

New

\starray_term_parser:nN
\starray_term_parser:nNTF
\starray_uparsed_if_in_p:Nn
\starray_uparsed_if_in:NnTF
\starray_uparsed_get_iter:N
\starray_uparsed_get_iter:NN
\starray_uparsed_get_iter:NNTF
\starray_uparsed_get_cnt:N
\starray_uparsed_get_cnt:NN
\starray_uparsed_get_cnt:NNTF
\starray_uparsed_get_prop:Nn
\starray_uparsed_get_prop:NnN
\starray_uparsed_get_prop:NnNTF
\starray_uparsed_get_unique_id:NN

\starray_uparsed_get_unique_id:NNTF

14

9.3 Parsed Commands on Iterate Over

When iterating over a (starray-ref), see 6.2.1, internal variables are set pointing the current (it-
erated over) starray term: This removes the need, for instance, to execute \starray_term_parser:n
before using some ‘parsed’ commands (previous sections). The following commands can be used
in combination with the ones from 9.1 and 9.2.

Observe that, in case of nested \starray_iterate_over:nn, the _iparsed_ commands always refer
to the immediate \starray_iterate_over:nn, meaning that, in ‘case A’ below, key-4a is a key of
the starray (st-A) ((st-Aliter st-A])), whilst (case B), key-Xa is a key of the starray (st-A.sub-X)
(better said: (st-Aliter st-A].sub-X[iter sub-X])

\starray_iterate_over:nn {st-A}

{
... \starray_iparsed_get_prop:n {key-Aa} %% case A
\starray_iterate_over:NN {st-A.sub-X}
{
... \starray_iparsed_get_prop:n {key-Xa} %/ case B
}
}

\starray_iparsed_if_in_p:n x \starray_iparsed_if_in_p:nTF {(key)}
\starray_iparsed_if_in:nTF % \starray_iparsed_if_in:nTF {(key)} {(if-true)} {(if-false)}

new: 2026/02/01

This will test if the given key is present in the current, iterated over, term.
Note: The predicate version, _p, expands to either \c_true_bool or
\c_false_bool.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

\starray_iparsed_get_iter: % \starray_iparsed_get_iter:

new: 2026/02/01

\starray_iparsed_get_iter: will place in the current iterator’s value, using \int_use:N, of the
current, iterated over, term in the input stream.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

\starray_iparsed_get_iter:N \starray_iparsed_get_iter:N {(int-var)}
\starray_iparsed_get_iter:NTF \starray_iparsed_get_iter:NTF {(int-var)} {(if-true)} {(if-false)}

new: 2026/02/01

These will save the iterator’s value (of a parsed term) in a integer variable (exp13). The (if-true)
and (if-false) regards the status of the last \starray_term_parser: command, iff the option parsed
check (see 2) is enable, otherwise it will always execute the (if-true) branch.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

\starray_iparsed_get_cnt: x \starray_iparsed_get_cnt:

new: 2026/02/01

\starray_iparsed_get_cnt: will place the current number of terms, using \int_use:N, of the cur-
rent, iterated over, term, in the input stream.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

15

\starray_iparsed_get_cnt:N \starray_get_cnt:N {(integer)}
\starray_iparsed_get_cnt:NTF \starray_get_cnt:NTF {(integer)} {(if-true)} {(if-false)}

new: 2026/02/01

Similarly to \starray_get_cnt:nN and \starray_get_cnt:nNTF these will save the number of terms
(of the current, iterated over, term) in a integer variable (exp13). The (if-true) and (if-false)
regards the status of the last \starray_term_parser: command, iff the option parsed check (see 2)
is enable, otherwise it will always execute the (if-true) branch.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

\starray_iparsed_get_prop:n x \starray_iparsed_get_prop:n {(key)}

new: 2026/02/01

\starray_iparsed_get_prop:n {(key)} places the value of (key), if it exists, from the current, iterated
over, term, in the input stream.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

\starray_iparsed_get_prop:nN \starray_iparsed_get_prop:nN {(key)} {(tl-var)}
\starray_iparsed_get_prop:nNTF \starray_iparsed_get_prop:nNTF {(key)} {(t1l-var)} {(if-true)} {(if-false)}

new: 2026/02/01

\starray_iparsed_get_prop:nN {(key)} {(tl-val)} stores the value of (key), if it exists, from the
current, iterated over, term. The (if-false) branch is executed if (key) doesn’t exist or (if the
option parsed check, see 2, is enabled) if the last parser operation has failed.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

\starray_iparsed_get_unique_id:nN \starray_iparsed_get_unique_id:nN {(tl-var)}
\starray_iparsed_get_unique_id:nNTF \starray_iparsed_get_unique_id:nNTF {(tl-var)} {(if-true)} {(if-false)}

new: 2026/02/01

Gets an ‘unique ID’ from the current, iterated over, term. The (if-true) and (if-false) regards the
status of the last \starray_term_parser: command, iff the option parsed check (see 2) is enable,
otherwise it will always execute the (if-true) branch.

Warning: This should only be used in the (code) part of \starray_iterate_over:nn
or \starray_iterate_over:nnTF.

10 Showing (debugging) starrays

\starray_show_def:n \starray_show_def:n {(starray-ref)}
\starray_show_def_in_text:n \starray_show_def_in_text:n {(starray-ref)}

Displays the (starray) structure definition and initial property values in the terminal or directly
in text.

\starray_show_terms:n \starray_show_terms:n {(starray-ref)}
\starray_show_terms_in_text:n \starray_show_terms_in_text:n {(starray-ref)}

Displays the (starray) instantiated terms and current property values in the terminal or directly
in text.

16

	Introduction
	Package Options
	Demo package(s)
	Creating a starray
	Conditionals

	Defining and initialising a starray structure
	Fixing an ill-instantiated starray

	Instantiating starray Terms
	Referencing Terms
	Iterators
	Iterating Over

	Changing and Recovering starray Properties
	Additional Commands and Conditionals
	Parsed Commands
	Parsed Commands Based on Internal Variables
	Parsed Commands Based on User Variables
	Deprecation Equivalence List

	Parsed Commands on Iterate Over

	Showing (debugging) starrays

